Normalization using vsn
normalize_vsn.Rd
normalize_vsn
performs variance stabilizing transformation
using the vsn-package
.
Arguments
- se
SummarizedExperiment, Proteomics data (output from
make_se()
ormake_se_parse()
). It is adviced to first remove proteins with too many missing values usingfilter_se()
.
Examples
# Load example
data(Silicosis_pg)
data <- Silicosis_pg
data_unique <- make_unique(data, "Gene.names", "Protein.IDs", delim = ";")
# Make SummarizedExperiment
ecols <- grep("LFQ.", colnames(data_unique))
# Load experiement design
data(Silicosis_ExpDesign)
exp_design <- Silicosis_ExpDesign
se <- make_se(data_unique, ecols, exp_design)
se <- make_se_parse(data_unique, ecols, mode = "delim", sep = "_")
# Filter and normalize
filt <- filter_se(se, thr = 0, fraction = 0.4, filter_formula = ~ Reverse != "+" & Potential.contaminant!="+")
#> filter base on missing number is <= 0 in at least one condition.
#> filter base on missing number fraction < 0.4 in each row
#> filter base on giving formula
norm <- normalize_vsn(filt)
#> vsn2: 8762 x 20 matrix (1 stratum).
#> Please use 'meanSdPlot' to verify the fit.