Skip to contents

All functions

DEGdata-class
Class "DEGdata" This class store the test result from DESeq2
add_rejections(<SummarizedExperiment>) add_rejections(<DEGdata>)
Mark significant proteins
GS_imp_wrapper()
pre_processing_GS_wrapper
ID_transform()
ID transform SE or DEGdata
NAiszero()
Transform NA to 0 in assay of a SummarizedExperiment
Order_cols()
Set order of experiment design for SummarizedExperiment
PPInetwork()
Draw a network on PPI result
Silicosis_ExpDesign
Silicosis_ExpDesign - experiment design of silicosis mouse proteome
Silicosis_peptide
Silicosis_peptide - peptide quantity data of a silicosis mouse model
Silicosis_pg
Silicosis_pg - proteinGroups data of a silicosis mouse model
Silicosis_phos
Silicosis_phos - phosphoproteome result of a silicosis mouse model
aggregate_pe()
Summarize peptide quantity to protein quantity
annoSpecies_df()
Species information table
check_PPI_depends()
Check required packages for PPI analysis.
check_RNAseq_depends()
Check required packages for DESeq2.
check_enrichment_depends()
Check required packages for enrichment analysis.
check_organismDB_depends()
Check organism annotation package
clean_character()
Clean characters in expression columns
correct_PTM_by_Protein()
correct_PTM_by_Protein
downloadAbsentFile()
Title
filter_pe()
Filter Qfeatures object on missing values or formula
filter_se()
Filter SummarizedExperiment on missing values or formula
get_ORA_result()
Extract significant enrichment terms base on giving threshold
get_contrast()
Get contrast(s) from SummarizedExperiment or DEGdata
get_df_long()
Generate a long data.frame from a SummarizedExperiment
get_df_wide()
Generate a wide data.frame from a SummarizedExperiment
get_exdesign_parse()
Construct experiment design basic on colnames parse
get_prefix()
Obtain the longest common prefix
get_results()
Generate a results table
get_signicant()
Extract significant candidates from SummarizedExperiment or DEGdata
get_suffix()
Obtain the longest common suffix
get_tc_cluster()
Time-course clustering
impute()
Impute missing values
impute_pe()
Impute a QFeatures object
load_PPIdata()
Check and load a local STRING data. If local file do not exist, will try to download from STRING.
make_dds()
Count matrix to DESeqDataSet conversion using an experimental design
make_dds_parse()
Count matrix to DESeqDataSet conversion by parsing from column names
make_pe()
Data.frame to QFeatures object conversion using an experimental design
make_pe_parse()
Data.frame to QFeatures object conversion by parsing column names
make_se()
Data.frame to SummarizedExperiment object conversion using an experimental design
make_se_parse()
Data.frame to SummarizedExperiment object conversion using parsing from column names
make_unique()
Make unique names
make_unique_ptm()
Make unique names for a modication-enriched peptide table
manual_impute()
Imputation by random draws from a manually defined distribution
meanSdPlot()
Plot row standard deviations versus row means
normalize_pe()
Normalize a QFeatures object
normalize_vsn()
Normalization using vsn
ntf_deg()
Assign normalized assay for DEGdata object
pe2se()
Extract the proteins SummarizedExperiment object from a QFeatures container
plot_Tsne()
Plot t-Sne
plot_cond()
Plot frequency of significant conditions per protein and the overlap in proteins between conditions
plot_cond_freq()
Plot frequency of significant conditions per protein
plot_cond_overlap()
Plot conditions overlap
plot_cor()
Plot correlation matrix
plot_coverage()
Plot protein coverage
plot_cvs()
Plot sample coefficient of variation whitin group
plot_detect()
Visualize intensities of proteins with missing values
plot_diff_hist()
Fit a Gaussian distribution for L2FC of each contrast
plot_dist()
Plot Gower's distance matrix
plot_frequency()
Plot protein overlap between samples
plot_heatmap(<SummarizedExperiment>) plot_heatmap(<DEGdata>)
Plot a heatmap
plot_imputation()
Visualize imputation
plot_ma_RNA()
MA-plot of RNA expression data
plot_ma_pro()
MA-plot of quantity data
plot_missval()
Plot a heatmap of proteins with missing values
plot_multi_heatmap()
Plot heatmap of specified genes/proteins across multiple omics results
plot_multi_venn()
Plot venn plot of specified genes/proteins across multiple omics results
plot_norm_distribution()
Plot the fit normal for log2 fold change
plot_normalization()
Visualize normalization
plot_numbers()
Plot protein numbers
plot_pca()
Plot PCA
plot_single()
Plot values for a protein/gene of interest
plot_statistics()
Plot the distribution of statistic valuse. develop from statistics_plot
plot_umap()
Plot Tsne
plot_volcano()
Volcano plot
reshape_long2wide()
Reshape a long table to wide
rlg_deg()
Assign a rlog transformed assay for DEGdata object
run_app()
Run shiny application in DEP2
test_GSEA()
GSEA data
test_ORA()
ORA for differenatial test result
test_PPI()
Protein-protein interaction analysis
test_diff()
Differential enrichment/expression test
test_diff_deg()
Differential expression test on a DESeqDataSet
theme_DEP1()
DEP ggplot theme 1
theme_DEP2()
DEP ggplot theme 2