Skip to contents

Enrich biological functions on significant candidate via a over representation analysis.

Usage

test_ORA(
  x,
  contrasts = NULL,
  type = c("GO", "KEGG", "REACTOME"),
  species = "Human",
  by_contrast = FALSE,
  pAdjustMethod = c("BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr",
    "none"),
  ...
)

Arguments

x

A SummarizedExperiment/DEGdata output from add_adjections or a charachter vector containing candidate identifier(SYMBOL, EntrezID, UniprotID or ENSEMBL).

contrasts

Character, analyse results in which contrasts.

type

Character, one of "GO","KEGG","REACTOME". The datasets for enrichment analysis.

species

The species name.

by_contrast

Logical(1). If true, draw enrichment on each contrast, else draw on the total significant candidates.

pAdjustMethod

Character, one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

...

Other parameters in enricher() except the cutoff setting

Value

A enrichResult or compareClusterResult object according by_contrast.

Examples

if (FALSE) {
# Load example
data(Silicosis_pg)
data <- Silicosis_pg
data_unique <- make_unique(data, "Gene.names", "Protein.IDs", delim = ";")

# Make SummarizedExperiment
ecols <- grep("LFQ.", colnames(data_unique))
se <- make_se_parse(data_unique, ecols,mode = "delim")

# Filter and normalize
filt <- filter_se(se, thr = 0, fraction = 0.4, filter_formula = ~ Reverse != "+" & Potential.contaminant!="+")
norm <- normalize_vsn(filt)

# Impute missing values using different functions
imputed <- impute(norm, fun = "MinProb", q = 0.05)

# Test for differentially expressed proteins
diff <- test_diff(imputed, type = "control", control  = c("PBS"), fdr.type = "Storey's qvalue")
dep <- add_rejections(diff, alpha = 0.01,lfc = 2)

# GO enrichment
check_organismDB_depends(organism = "Mouse") # check annotation package of Mouse
res_ora <- test_ORA(dep, contrasts = "W4_vs_PBS", species = "Mouse",type = "GO")
enrichplot::dotplot(res_ora)
}