Extract significant enrichment terms base on giving threshold
get_ORA_result.Rd
get_ORA_result
filter the enrichment result
from test_ORA
though certain threshold.
Usage
get_ORA_result(
ORA_enrichment,
ont = NULL,
pvalueCutoff = 0.05,
qvalueCutoff = 0.2,
simplify = FALSE,
simplify.cutoff = 0.7,
simplify.measure = c("Wang", "Resnik", "Lin", "Rel", "Jiang"),
simplify.semData = NULL,
return_table = F
)
Arguments
- ont
One of "ALL", "BP", "MF", "CC"
- pvalueCutoff
Numeric(1), the p.value cutoff on enrichment result
- qvalueCutoff
Numeric(1), the qvalue cutoff on enrichment tests
- simplify
Logical(1), if simplify GO terms by
simplify
- simplify.cutoff
Numeric(1), the cutoff value transmitted to
simplify
- return_table
Logical(1), if true return a enrichResult or a result table
- reat
The output from test_ORA
Value
A enrichResult/compareClusterResult of significant enrichment, or a result table of the significant enrichment if return_table is TRUE.
Examples
if (FALSE) {
# Load example
data(Silicosis_pg)
data <- Silicosis_pg
data_unique <- make_unique(data, "Gene.names", "Protein.IDs", delim = ";")
# Differential test
ecols <- grep("LFQ.", colnames(data_unique))
se <- make_se_parse(data_unique, ecols,mode = "delim")
filt <- filter_se(se, thr = 0, fraction = 0.4, filter_formula = ~ Reverse != "+" & Potential.contaminant!="+")
norm <- normalize_vsn(filt)
imputed <- impute(norm, fun = "MinProb", q = 0.05)
diff <- test_diff(imputed, type = "control", control = c("PBS"), fdr.type = "Storey's qvalue")
res_ora <- test_ORA(dep, contrasts = "W4_vs_PBS", species = "Mouse",type = "GO")
res_ora2 <- get_ORA_result(res_ora)
}