
Extract significant candidates from SummarizedExperiment or DEGdata
get_signicant.RdExtract significant candidates from SummarizedExperiment or DEGdata
Usage
get_signicant(
  object,
  contrasts = NULL,
  thresholdmethod = NULL,
  diff = diff,
  alpha = alpha,
  curvature = 1,
  x0_fold = 2,
  return_type = c("subset", "table", "names")
)Arguments
- object
 a SummarizedExperiment or DEGdata object.
- contrasts
 NULL or contrasts in object.
- thresholdmethod
 NULL or 'intersect' or 'curve'. The thresholdmethod to decide significant. If is NULL, used existing rejections. Otherwise filter new rejections via
add_rejections().- alpha
 Numeric(1), Sets the threshold for the adjusted P value.
- curvature
 Numeric(1), Sets the curvature for the curve cutoff lines
- x0_fold
 Numeric(1), decide the x0 ratio to the standard deviations of L2FC. The x0 usually is set to 1(medium confidence) or 2(high confidence) standard deviations.
- return_type
 One of "subset", "table", "names". "subset" return a subset object, "table" return a result data.frame, names return name vector of object.
Value
A object in the same class of input or a data.frame or a names vector, designed by return_type.
Examples
# Load example
data(Silicosis_pg)
data <- Silicosis_pg
data_unique <- make_unique(data, "Gene.names", "Protein.IDs", delim = ";")
# Differential test
ecols <- grep("LFQ.", colnames(data_unique))
se <- make_se_parse(data_unique, ecols,mode = "delim")
filt <- filter_se(se, thr = 0, fraction = 0.4, filter_formula = ~ Reverse != "+" & Potential.contaminant!="+")
#> filter base on missing number is <= 0 in at least one condition.
#> filter base on missing number fraction < 0.4 in each row
#> filter base on giving formula 
norm <- normalize_vsn(filt)
#> vsn2: 8762 x 20 matrix (1 stratum). 
#> Please use 'meanSdPlot' to verify the fit.
imputed <- impute(norm, fun = "MinProb", q = 0.05)
#> Imputing along margin 2 (samples/columns).
#> [1] 0.3026531
diff <- test_diff(imputed, type = "control", control  = c("PBS"), fdr.type = "Storey's qvalue")
#> Tested contrasts: W10_vs_PBS, W2_vs_PBS, W4_vs_PBS, W6_vs_PBS, W9_vs_PBS
#> Storey's qvalue
dep <- add_rejections(diff, alpha = 0.01,lfc = 2)
# Signicant subset
(sig <- get_signicant(dep))
#> class: SummarizedExperiment 
#> dim: 234 20 
#> metadata(0):
#> assays(1): ''
#> rownames(234): Acp5 Adamts8 ... Ywhab Zbp1
#> rowData names(75): name Protein.IDs ... W9_vs_PBS_significant
#>   significant
#> colnames(20): PBS_1 PBS_2 ... W9_2 W9_4
#> colData names(4): label ID condition replicate
# Given threshold
(sig <- get_signicant(dep, contrast = "W4_vs_PBS", alpha = 0.001, diff = 2))
#> class: SummarizedExperiment 
#> dim: 70 20 
#> metadata(0):
#> assays(1): ''
#> rownames(70): Adamts8 Add2 ... Treml1 Zbp1
#> rowData names(75): name Protein.IDs ... W9_vs_PBS_significant
#>   significant
#> colnames(20): PBS_1 PBS_2 ... W9_2 W9_4
#> colData names(4): label ID condition replicate
# In table format
sig_df <- get_signicant(dep, return_type = "table")
head(sig_df)
#>      name     ID W10_vs_PBS_p.val W2_vs_PBS_p.val W4_vs_PBS_p.val
#> 1    Acp5 Q05117     1.411879e-05    5.910853e-04    4.778749e-03
#> 2 Adamts8 P57110     8.468615e-02    1.088907e-02    2.930611e-03
#> 3    Add2 Q9QYB8     2.273146e-04    5.390183e-03    1.325563e-04
#> 4    Aif1 O70200     9.869643e-06    1.275223e-07    2.825726e-07
#> 5  Alox12 P39655     3.538216e-03    3.931431e-03    4.797651e-03
#> 6    Ank1 Q02357     2.101051e-04    4.827090e-04    1.665043e-05
#>   W6_vs_PBS_p.val W9_vs_PBS_p.val W10_vs_PBS_p.adj W2_vs_PBS_p.adj
#> 1    2.099924e-04    0.0003195929         0.000685        2.48e-03
#> 2    1.258278e-04    0.0023387008         0.094700        1.79e-02
#> 3    5.529725e-04    0.0072071771         0.002900        1.10e-02
#> 4    1.105552e-05    0.0007297945         0.000548        1.33e-05
#> 5    1.476942e-04    0.0054096376         0.012800        8.82e-03
#> 6    7.312216e-05    0.0000795242         0.002770        2.15e-03
#>   W4_vs_PBS_p.adj W6_vs_PBS_p.adj W9_vs_PBS_p.adj W10_vs_PBS_significant
#> 1        1.33e-02        0.001180         0.00281                   TRUE
#> 2        9.66e-03        0.000850         0.00878                  FALSE
#> 3        1.55e-03        0.002060         0.01780                   TRUE
#> 4        4.28e-05        0.000206         0.00446                   TRUE
#> 5        1.33e-02        0.000936         0.01460                  FALSE
#> 6        4.88e-04        0.000617         0.00129                   TRUE
#>   W2_vs_PBS_significant W4_vs_PBS_significant W6_vs_PBS_significant
#> 1                 FALSE                 FALSE                 FALSE
#> 2                 FALSE                  TRUE                  TRUE
#> 3                 FALSE                  TRUE                 FALSE
#> 4                  TRUE                  TRUE                  TRUE
#> 5                 FALSE                 FALSE                  TRUE
#> 6                 FALSE                  TRUE                  TRUE
#>   W9_vs_PBS_significant significant W10_vs_PBS_ratio W2_vs_PBS_ratio
#> 1                 FALSE        TRUE             2.26            1.29
#> 2                  TRUE        TRUE             1.48            1.89
#> 3                 FALSE        TRUE            -2.62           -1.46
#> 4                 FALSE        TRUE             2.56            2.92
#> 5                 FALSE        TRUE            -1.80           -1.45
#> 6                  TRUE        TRUE            -2.35           -1.76
#>   W4_vs_PBS_ratio W6_vs_PBS_ratio W9_vs_PBS_ratio PBS_centered W10_centered
#> 1           0.994            1.44            1.69        -1.14        1.120
#> 2           2.290            3.27            2.89        -1.93       -0.448
#> 3          -2.260           -1.95           -1.72         1.57       -1.050
#> 4           2.760            2.07            1.69        -1.98        0.583
#> 5          -1.410           -2.12           -1.70         1.35       -0.457
#> 6          -2.420           -2.12           -2.58         1.75       -0.593
#>   W2_centered W4_centered W6_centered W9_centered
#> 1     0.15100     -0.1470      0.3000       0.549
#> 2    -0.03990      0.3660      1.3400       0.967
#> 3     0.10500     -0.6920     -0.3810      -0.147
#> 4     0.94900      0.7840      0.0933      -0.283
#> 5    -0.10500     -0.0643     -0.7730      -0.351
#> 6    -0.00249     -0.6710     -0.3700      -0.826